Posts Tagged ‘geograf’

Keajaiban Dunia Yang Spektakuler

Posted: Desember 26, 2010 in Telusuri yuk
Tag:


Pulau Paskah adalah sebuah pulau Polinesia di Samudra Pasifik tenggara. Sebuah wilayah khusus Chile yg dianeksasi pada 1888, Pulau Paskah secara luas yang terkenal dengan 887 patung-patung monumental. Ini adalah Situs Warisan Dunia dengan banyak pulau yang dilindungi dalam Taman Nasional Rapa Nui.

2. Machu Pichu (Peru)

Machu Picchu adalah sebuah situs Inca pra-Columbus yang terletak 2.430 meter (8.000 kaki) di atas permukaan laut. Kebanyakan arkeolog percaya bahwa Machu Picchu dibangun sebagai kawasan untuk kaisar Inca Pachacuti (1438-1472). Sering disebut sebagai “The Lost City of the Incas”.

3. Teotihuacan (Meksiko)

Teotihuacan adalah sebuah situs arkeologi yang sangat besar di Cekungan Meksiko, yang berisi beberapa struktur piramida terbesar dibangun di Amerika pra-Columbus. Selain struktur piramidal, Teotihuacan juga dikenal untuk kompleks perumahan yang besar.

4. Palenque (Meksiko)

Palenque adalah kota negara bagian di Meksiko selatan yang berkembang di abad ketujuh Masehi.

5. Château de Chambord (France)

merupakan salah satu Châteaux yang paling dikenal di dunia karena sangat berbeda dengan arsitektur Renaissance Perancis yang memadukan bentuk-bentuk tradisional Perancis abad pertengahan dengan struktur Italia klasik.

6. Chartres Cathedral (Perancis)

sebuah katedral Katolik Ritus Latin yang terletak di Chartres, sekitar 80 kilometer (50 mil) barat daya Paris, dianggap sebagai salah satu contoh terbaik di seluruh Perancis gaya arsitektur Gothic.

7. Pont du Gard (Perancis)

Pont du Gard adalah saluran air di Selatan Perancis yang dibangun oleh Kekaisaran Romawi, dan terletak di vers-du-Pont-Gard dekat Remoulins, di département Gard

8. Acropolis of Athens (Yunani)

acropolis paling terkenal di dunia. Meskipun ada banyak acropoleis lainnya di Yunani. Acropolis adalah batu beratap datar yang berada pada ketinggian 150 m (490 kaki) di atas permukaan laut di kota Athena, dengan luas permukaan sekitar 3 hektar.

9. Archaeological Site of Delphi (Yunani)

sebuah situs arkeologi dan sebuah kota modern di Yunani di selatan-barat Gunung Parnassus di lembah Phocis. Delphi adalah situs dari Orakel Delphi, peramal yang paling penting di dunia Yunani klasik, dan situs utama untuk penyembahan dewa Apollo. Di dalam Delphi adalah sebuah tempat panhellenic, di mana setiap empat tahun, mulai tahun 586 SM (Miller, 96) atlet dari seluruh dunia Yunani berkompetisi di Olimpiade Pythian.

10. Epidaurus Theater (Yunani)

Teater terbesar di yunani saat itu, bisa menampung lebih dari 15 ribu orang

11. Colosseum (Italia)

awalnya, adalah sebuah elips amfiteater di pusat kota Roma, Italia, yang terbesar yang pernah dibangun di Kekaisaran Romawi. Hal ini dianggap salah satu karya terbesar dari arsitektur Romawi dan rekayasa Romawi. Mampu menampung 50.000 penonton, Colosseum digunakan untuk kontes gladiator dan acara publik. Selain sebagai permainan gladiator, acara publik lainnya diadakan di sana, seperti pertempuran laut tiruan, berburu binatang, eksekusi, dan drama yang didasarkan pada mitologi klasik.

12. Grand Canal Of Venice (Italia)

Grand Canal sebuah kanal di Venesia, Italia. Membentuk salah satu koridor lalu lintas air besar di kota.

13. Pompeii (Italia)

Pompeii adalah reruntuhan di Naples modern di wilayah Italia Campania, di wilayah Comune di Pompeii. Seiring dengan Herculaneum, kota tetangga, Pompeii hancur dan sepenuhnya terkubur selama bencana letusan gunung berapi panjang Gunung Vesuvius pada 79 Masehi.

14. Piazza del Campo (Italy)

Piazza del Campo adalah daerah publik utama pusat bersejarah Siena, Toscana, Italia dan merupakan salah tempat pemerintahan terbesar abad pertengahan Eropa.

15. Hieronymites Monastery (Portugal)

terletak di distrik Belem Lisbon, Portugal. Biara megah ini dapat dianggap salah satu monumen yang paling menonjol di Lisbon dan tentunya merupakan salah satu prestasi paling berhasil gaya Manueline (Portugis akhir-Gothic).

16. Alhambra (Spanyol)

sebuah istana dan kompleks benteng dibangun pada pertengahan abad ke 14 oleh penguasa Moor dari Granada Emirat di Al-Andalus.

17. Chillon Castle (Swiss)

terletak di tepi Danau Jenewa di kotamadya Veytaux, di ujung timur danau, 3 km dari Montreux, Swiss. Puri/kastil ini terdiri dari 100 gedung independen yang terhubung secara bertahap menjadi bangunan besar.

18. Stonehenge (Inggris)

Stonehenge adalah monumen prasejarah yang terletak di daerah Wiltshire Inggris, sekitar 3,2 kilometer (2,0 mil) barat Amesbury dan 13 kilometer (8,1 mil) utara Salisbury. Salah satu situs paling terkenal di dunia, Stonehenge terdiri dari Earthworks pengaturan melingkar mengelilingi sebuah batu besar berdiri. Hal ini ada di pusat kompleks yang paling padat Neolitik dan Zaman Perunggu monumen di Inggris, termasuk beberapa ratus gundukan pemakaman.

19. Piramida (Mesir)

diyakini piramida ini dibangun sebagai makam untuk Firaun dinasti keempat Mesir Khufu (Cheops dalam bahasa Yunani) dan dibangun selama periode 20 tahun. Piramida Agung terdiri dari lebih dari 2,3 juta blok batu kapur

20. Abu SImbel (Mesir)

dua kuil batu besar di Nubia, Mesir selatan di tepi barat Danau Nasser sekitar 290 km barat daya Aswan. Ini merupakan bagian dari Situs Warisan Dunia UNESCO. Candi kembar ini awalnya dipahat dari gunung pada masa pemerintahan Firaun Ramses II di abad ke-13 SM, sebagai monumen abadi untuk dirinya dan ratunya Nefertari, untuk memperingati dugaan kemenangan di Pertempuran Kades

21. Karnak (mesir)

terdiri dari konglomerasi besar candi hancur, kapel, tiang dan bangunan lain, terutama Candi Agung Amin dan struktur besar dimulai oleh Firaun Amenhotep III (ca. 1391-1351 SM). Terletak dekat Luxor, sekitar 500 km selatan Kairo, di Mesir. Daerah sekitar Karnak adalah Mesir kuno Ipet-isut (“Paling Dipilih Tempat”) dan tempat utama pemujaan Triad Theban dengan dewa Amun sebagai pemimpin

22. Mortuary Temple of Hatshepsut (mesir)

terletak di bawah tebing di Deir el Bahari di tepi barat Sungai Nil dekat Lembah Para Raja di Mesir. Dirancang oleh arsitek Senemut, kuil kamar mayat didedikasikan untuk dewa matahari Amon-Ra dan terletak di sebelah pura mayat dari Mentuhotep II, yang menjabat baik sebagai inspirasi, dan kemudian, sebuah tambang. Hal ini dianggap salah satu “monumen Mesir kuno yang tak tertandingi.”

23. Leptis Magna (Libya)

kota yang menonjol dari Kekaisaran Romawi. Its reruntuhan terletak di Al Khums, Libya. Situs ini merupakan salah satu reruntuhan Romawi yang paling spektakuler dan murni di Mediterania. Kota ini tampaknya telah didirikan oleh koloni Phoenician sekitar tahun 1100 SM

24. Timbuktu (Mali)

sebuah kota di Region Timbuktu, di negara Afrika Barat Mali. bangunan ini dibuat oleh kesepuluh mansa Kekaisaran Mali, Mansa Musa. Ini adalah rumah bagi Sankore University dan madrasah lainnya, dan merupakan modal intelektual dan spiritual dan pusat penyebaran Islam di seluruh Afrika pada abad ke-15 dan 16.

25. Angkor Wat (Cambodia)

sebuah kompleks candi di Angkor, Kamboja, dibangun untuk raja Suryavarman II di awal abad ke-12 sebagai kuil negara dan ibu kota. Sebagai candi terbaik diawetkan di situs, ini adalah satu-satunya untuk tetap menjadi pusat keagamaan penting

26. Tembok Besar China (RRC)

27. Forbidden City (RRC)

istana kekaisaran Cina dari Dinasti Ming ke akhir Dinasti Qing. Terletak di tengah Beijing, Cina, dan sekarang rumah Museum Istana. Selama hampir lima abad, ia menjabat sebagai rumah Kaisar dan keluarganya, serta pusat upacara dan politik dari pemerintah Cina. Sejak 1925, Kota Terlarang telah di bawah muatan Museum Istana, yang ekstensif koleksi karya seni dan artifak dibangun atas koleksi kekaisaran Ming dan dinasti Qing

28. Terracotta Army (China)

Perkiraan saat ini adalah bahwa dalam tiga lubang berisi Tentara Terracotta ada lebih dari 8.000 tentara, 130 kereta dengan 520 kuda dan 150 kuda kavaleri, yang sebagian besar masih dikubur di lubang. Banyak arkeolog percaya bahwa ada banyak lubang masih menunggu untuk ditemukan

29. Hanging Temple of Hengshan (China)

Candi yang dibangun di tebing. Candi ini merupakan salah satu atraksi wisata utama dan situs sejarah di daerah Datong. dibangun lebih dari 1.500 tahun yang lalu

30. Leshan Giant Buddha (China)

Ini adalah batu berukir Buddha terbesar di dunia. tingginya 71 meter (233 kaki), patung itu menggambarkan seorang Buddha Maitreya duduk dengan tangan bertumpu di lututny

31. Taj Mahal (India)

sebuah makam yang terletak di Agra, India, dibangun oleh Kaisar Mughal Shah Jahan untuk mengenang istri kesayangannya, Mumtaz Mahal. Taj Mahal dianggap sebagai contoh terbaik dari arsitektur Mughal, gaya yang menggabungkan elemen dari Persia, India, dan gaya arsitektur Islam

32. Harmandir Sahib (India)

33. Meenakshi Sundareswarar Temple (India)

candi Hindu bersejarah yang terletak di kota suci Madurai, Tamil Nadu, India. Hal ini didedikasikan untuk Tuhan Shiva (dalam bentuk Indah Sundareswarar atau Tuhan) dan istrinya, Dewi Parvati (dalam bentuk Meenakshi). Candi Bentuk jantung dan garis hidup tahun 2500 kota tua Madurai. Kompleks rumah 14 Gopurams megah atau menara

34. Borobudur (Indonesia)

Sebuah kubah utama, terletak di pusat dari platform atas, dikelilingi oleh 72 patung Buddha duduk di dalam stupa yang berlubang. Monumen ini kedua tempat suci untuk Sang Buddha dan tempat untuk ziarah Buddhis. Perjalanan untuk peziarah dimulai di dasar monumen dan mengikuti jalan keliling monumen sambil naik ke atas melalui tiga tingkat kosmologi Buddhis, yaitu Kamadhatu (dunia keinginan), Rupadhatu (dunia bentuk) dan Arupadhatu ( dunia tak berbentuk). Selama perjalanan pemandu monumen para peziarah melalui sistem tangga dan koridor dengan 1.460 panel relief cerita pada dinding dan langkan

35. Kinkaku-ji (Japan)

kuil Buddha Zen di Kyoto, Jepang. Ini adalah salah satu pembangunan yang merupakan Budaya Kitayama periode Muromachi. Asli Kinkaku-ji dibangun pada 1397 untuk melayani sebagai vila pensiun bagi Shogun Ashikaga Yoshimitsu, sebagai bagian dari kekayaannya kemudian dikenal sebagai Kitayama

36. Bagan (Myanmar)

sebuah kota kuno di Divisi Mandalay Burma (Myanmar)

37. Banaue Rice Terraces (Philippines)

terasering tua berumur 2000-tahun yang diukir di pegunungan Ifugao di Filipina oleh nenek moyang penduduk asli

38. Russia

39. Wat Phra Kaew (Thailand)

dianggap sebagai candi Budha paling suci di Thailand. Terletak di pusat sejarah Bangkok (distrik Phra Nakhon), di lingkungan Grand Palace. Pembangunan kuil dimulai ketika Raja Buddha Yodfa Chulaloke (Rama I) memindahkan ibukota dari Thonburi ke Bangkok pada 1785. Tidak seperti candi lain tidak mengandung tempat tinggal bagi para rahib, melainkan hanya memiliki tinggi dihiasi bangunan suci, patung, dan pagoda

40. Wat Arun (Thailand)

Wat Arun adalah sebuah kuil Buddha (wat) di distrik Bangkok Yai di Bangkok, Thailand, di tepi barat Sungai Chao Phraya.

sumber: dunia-panas.blogspot.com

Angin

Posted: Maret 7, 2010 in geograf
Tag:

Angin adalah udara yang bergerak yang diakibatkan oleh rotasi bumi dan juga karena adanya perbedaan tekanan udara di sekitarnya. Angin bergerak dari tempat bertekanan udara tinggi ke bertekanan udara rendah.

Apabila dipanaskan, udara memuai. Udara yang telah memuai menjadi lebih ringan sehingga naik. Apabila hal ini terjadi, tekanan udara turun kerena udaranya berkurang. Udara dingin di sekitarnya mengalir ke tempat yang bertekanan rendah tadi. Udara menyusut menjadi lebih berat dan turun ke tanah. Di atas tanah udara menjadi panas lagi dan naik kembali. Aliran naiknya udara panas dan turunnya udara dingin ini dinamanakan konveksi.

Faktor terjadinya angin

Faktor terjadinya angin, yaitu:

Anemometer, alat pengukur kecepatan angin

Gradien barometris
Bilangan yang menunjukkan perbedaan tekanan udara dari 2 isobar yang jaraknya 111 km. Makin besar gradien barometrisnya, makin cepat tiupan angin.
Letak tempat
Kecepatan angin di dekat khatulistiwa lebih cepat dari yang jauh dari garis khatulistiwa.
Tinggi tempat
Semakin tinggi tempat, semakin kencang pula angin yang bertiup, hal ini disebabkan oleh pengaruh gaya gesekan yang menghambat laju udara. Di permukaan bumi, gunung, pohon, dan topografi yang tidak rata lainnya memberikan gaya gesekan yang besar. Semakin tinggi suatu tempat, gaya gesekan ini semakin kecil.
Waktu
Di siang hari angin bergerak lebih cepat daripada di malam hari

Jenis-jenis angin

 Angin laut

Angin laut adalah angin yang bertiup dari arah laut ke arah darat yang umumnya terjadi pada siang hari dari pukul 09.00 sampai dengan pukul 16.00. Angin ini biasa dimanfaatkan para nelayan untuk pulang dari menangkap ikan di laut.

Angin darat

Angin darat adalah angin yang bertiup dari arah darat ke arah laut yang umumnya terjadi pada saat malam hari dari jam 20.00 sampai dengan jam 06.00. Angin jenis ini bermanfaat bagi para nelayan untuk berangkat mencari ikan dengan perahu bertenaga angin sederhana.

 Angin lembah

Angin lembah adalah angin yang bertiup dari arah lembah ke arah puncak gunung yang biasa terjadi pada siang hari.

 Angin gunung

Angin gunung adalah angin yang bertiup dari puncak gunung ke lembah gunung yang terjadi pada malam hari.

 Angin Fohn

Angin Fohn/angin jatuh adalah angin yang terjadi seusai hujan Orografis. angin yang bertiup pada suatu wilayah dengan temperatur dan kelengasan yang berbeda. Angin Fohn terjadi karena ada gerakan massa udara yang naik pegunungan yang tingginya lebih dari 200 meter di satu sisi lalu turun di sisi lain. Angin Fohn yang jatuh dari puncak gunung bersifat panas dan kering, karena uap air sudah dibuang pada saat hujan Orografis.

Biasanya angin ini bersifat panas merusak dan dapat menimbulkan korban. Tanaman yang terkena angin ini bisa mati dan manusia yang terkena angin ini bisa turun daya tahan tubuhnya terhada serangan penyakit.[rujukan?]

 Angin Munsoon

Angin Munsoon, Moonsun, muson adalah angin yang berhembus secara periodik (minimal 3 bulan) dan antara periode yang satu dengan yang lain polanya akan berlawanan yang berganti arah secara berlawanan setiap setengah tahun. Umumnya pada setengah tahun pertama bertiup angin darat yang kering dan setengah tahun berikutnya bertiup angin laut yang basah. Pada bulan Oktober – April, matahari berada pada belahan langit Selatan, sehingga benua Australia lebih banyak memperoleh pemanasan matahari dari benua Asia. Akibatnya di Australia terdapat pusat tekanan udara rendah (depresi) sedangkan di Asia terdapat pusat-pusat tekanan udara tinggi (kompresi). Keadaan ini menyebabkan arus angin dari benua Asia ke benua Australia. Di Indonesia angin ini merupakan angin musim Timur Laut di belahan bumi Utara dan angin musim Barat di belahan bumi Selatan. Oleh karena angin ini melewati Samudra Pasifik dan Samudra Hindia maka banyak membawa uap air, sehingga pada umumnya di Indonesia terjadi musim penghujan.

Musim penghujan meliputi seluruh wilayah indonesia, hanya saja persebarannya tidak merata. makin ke timur curah hujan makin berkurang karena kandungan uap airnya makin sedikit.

Pada bulan April-Oktober, matahari berada di belahan langit utara, sehingga benua asi lebih panas daripada benua australia. Akibatnya, di asia terdapat pusat-pusat tekanan udara rendah, sedangkan di australia terdapat pusat-pusat tekanan udara tinggi yang menyebabkan terjadinya angin dari australia menuju asi. Di indonesia terjadi angin musim timur di belahan bumi selatan dan angin musim barat daya di belahan bumi utara. Oleh kerena tidak melewati lautan yang luas maka angin tidak banyak mengandung uap air oleh karena itu pada umumnya di indonesia terjadi musim kemarau, kecuali pantai barat sumatera, sulawesi tenggara, dan pantai selatan irian jaya. Antara kedua musim tersebut ada musim yang disebut musim pancaroba (peralihan), yaitu : Musim kemareng yang merupakan peralihan dari musim penghujan ke musim kemarau, dan musim labuh yang merupakan peralihan musim kemarau ke musim penghujan. Adapun ciri-ciri musim pancaroba yaitu: Udara terasa panas, arah angin tidak teratur dan terjadi hujan secara tiba-tiba dalam waktu singkat dan lebat. Angin Munson dibagi menjadi 2, yaitu Munson Barat atau dikenal dengan Angin Musim Barat dan Munson Timur atau dikenal dengan Angin Musim Timur

 Angin Musim Barat

Angin Musim Barat/Angin Muson Barat adalah angin yang mengalir dari Benua Asia (musim dingin) ke Benua Australia (musim panas) dan mengandung curah hujan yang banyak di Indonesia bagian Barat, hal ini disebabkan karena angin melewati tempat yang luas, seperti perairan dan samudra. Contoh perairan dan samudra yang dilewati adalah Laut China Selatan dan Samudra Hindia. Angin Musim Barat menyebabkan Indonesia mengalami musim hujan.

Angin ini terjadi pada bulan Desember, januari dan Februari, dan maksimal pada bulan Januari dengan kecepatan minimum 3 m/s.

Angin Musim Timur

Angin Musim Timur/Angin Muson Timur adalah angin yang mengalir dari Benua Australia (musim dingin) ke Benua Asia (musim panas) sedikit curah hujan (kemarau) di Indonesia bagian Timur karena angin melewati celah- celah sempit dan berbagai gurun (Gibson, Australia Besar, dan Victoria). Ini yang menyebabkan Indonesia mengalami musim kemarau. Terjadi pada bulan Juni, Juli dan Agustus, dan maksimal pada bulan Juli.

Geofisika

Posted: Maret 6, 2010 in geograf
Tag:

Geofisika

Geofisika mempelajari bumi dengan kaidah dan prinsip fisika.

Geofisika adalah bagian dari ilmu bumi yang mempelajari bumi menggunakan kaidah atau prinsip-prinsip fisika. Di dalamnya termasuk juga meteorologi, elektrisitas atmosferis dan fisika ionosfer. Penelitian geofisika untuk mengetahui kondisi di bawah permukaan bumi melibatkan pengukuran di atas permukaan bumi dari parameter-parameter fisika yang dimiliki oleh batuan di dalam bumi. Dari pengukuran ini dapat ditafsirkan bagaimana sifat-sifat dan kondisi di bawah permukaan bumi baik itu secara vertikal maupun horisontal.

Dalam skala yang berbeda, metode geofisika dapat diterapkan secara global yaitu untuk menentukan struktur bumi, secara lokal yaitu untuk eksplorasi mineral dan pertambangan termasuk minyak bumi dan dalam skala kecil yaitu untuk aplikasi geoteknik (penentuan pondasi bangunan dll).

Di Indonesia, ilmu ini dipelajari hampir di semua perguruan tinggi negeri yang ada. Biasaya geofisika masuk ke dalam fakultas Matematika dan Ilmu Pengetahuan Alam (MIPA), karena memerlukan dasar-dasar ilmu fisika yang kuat, atau ada juga yang memasukkannya ke dalam bagian dari Geologi. Saat ini, baik geofisika maupun geologi hampir menjadi suatu kesatuan yang tak terpisahkan Ilmu bumi.

Bidang kajian ilmu geofisika meliputi meteorologi (udara), geofisika bumi padat dan oseanografi(laut).

Beberapa contoh kajian dari geofisika bumi padat misalnya seismologi yang mempelajari gempabumi, ilmu tentang gunungapi (Gunung Berapi) atau volcanology, geodinamika yang mempelajari dinamika pergerakan lempeng-lempeng di bumi, dan eksplorasi seismik yang digunakan dalam pencarian hidrokarbon.

Metode-metode geofisika

Secara umum, metode geofisika dibagi menjadi dua kategori yaitu metode pasif dan aktif. Metode pasif dilakukan dengan mengukur medan alami yang dipancarkan oleh bumi. Metode aktif dilakukan dengan membuat medan gangguan kemudian mengukur respons yang dilakukan oleh bumi. Medan alami yang dimaksud disini misalnya radiasi gelombang gempa bumi, medan gravitasi bumi, medan magnetik bumi, medan listrik dan elektromagnetik bumi serta radiasi radioaktivitas bumi. Medan buatan dapat berupa ledakan dinamit, pemberian arus listrik ke dalam tanah, pengiriman sinyal radar dan lain sebagainya.

Secara praktis, metode yang umum digunakan di dalam geofisika tampak seperti tabel di bawah ini:

Metode Parameter yang diukur Sifat-sifat fisika yang terlibat
Seismik Waktu tiba gelombang seismik pantul atau bias, amplitudo dan frekuensi gelombang seismik Densitas dan modulus elastisitas yang menentukan kecepatan rambat gelombang seismik
Gravitasi Variasi harga percepatan gravitasi bumi pada posisi yang berbeda Densitas
Magnetik Variasi harga intensitas medan magnetik pada posisi yang berbeda Suseptibilitas atau remanen magnetik
Resistivitas Harga resistansi dari bumi Konduktivitas listrik
Polarisasi terinduksi Tegangan polarisasi atau resistivitas batuan sebagai fungsi dari frekuensi Kapasitansi listrik
Potensial diri Potensial listrik Konduktivitas listrik
Elektromagnetik Respon terhadap radiasi elektromagnetik Konduktivitas atau Induktansi listrik
Radar Waktu tiba perambatan gelombang radar Konstanta dielektrik

Siklus air (hidrologi)

Posted: Maret 5, 2010 in geograf
Tag:

siklus hidrologi

Pergerakan air di permukan Bumi yang dinamakan siklus air.

Siklus air atau siklus hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfer ke bumi dan kembali ke atmosfir melalui kondensasi, presipitasi, evaporasi dan transpirasi.

Pemanasan air laut oleh sinar matahari merupakan kunci proses siklus hidrologi tersebut dapat berjalan secara terus menerus. Air berevaporasi, kemudian jatuh sebagai presipitasi dalam bentuk hujan, salju, hujan batu, hujan es dan salju (sleet), hujan gerimis atau kabut.

Pada perjalanan menuju bumi beberapa presipitasi dapat berevaporasi kembali ke atas atau langsung jatuh yang kemudian diintersepsi oleh tanaman sebelum mencapai tanah. Setelah mencapai tanah, siklus hidrologi terus bergerak secara kontinu dalam tiga cara yang berbeda:

  • Evaporasi / transpirasi – Air yang ada di laut, di daratan, di sungai, di tanaman, dsb. kemudian akan menguap ke angkasa (atmosfer) dan kemudian akan menjadi awan. Pada keadaan jenuh uap air (awan) itu akan menjadi bintik-bintik air yang selanjutnya akan turun (precipitation) dalam bentuk hujan, salju, es.
  • Infiltrasi / Perkolasi ke dalam tanah – Air bergerak ke dalam tanah melalui celah-celah dan pori-pori tanah dan batuan menuju muka air tanah. Air dapat bergerak akibat aksi kapiler atau air dapat bergerak secara vertikal atau horizontal dibawah permukaan tanah hingga air tersebut memasuki kembali sistem air permukaan.
  • Air Permukaan – Air bergerak diatas permukaan tanah dekat dengan aliran utama dan danau; makin landai lahan dan makin sedikit pori-pori tanah, maka aliran permukaan semakin besar. Aliran permukaan tanah dapat dilihat biasanya pada daerah urban. Sungai-sungai bergabung satu sama lain dan membentuk sungai utama yang membawa seluruh air permukaan disekitar daerah aliran sungai menuju laut.

Air permukaan, baik yang mengalir maupun yang tergenang (danau, waduk, rawa), dan sebagian air bawah permukaan akan terkumpul dan mengalir membentuk sungai dan berakhir ke laut. Proses perjalanan air di daratan itu terjadi dalam komponen-komponen siklus hidrologi yang membentuk sistem Daerah Aliran Sungai (DAS).Jumlah air di bumi secara keseluruhan relatif tetap, yang berubah adalah wujud dan tempatnya.

Sejarah Pembentukan Bumi dan Perkembangannya: Teori Terjadinya Bumi dan Tata Surya

Bumi terbentuk miliaran tahun lalu, tetapi permukaan Bumi telah banyak mengalami proses perkembangan dan perubahan sepanjang masa. Perubahan tersebut bersifat cepat maupun lambat. Penyebab perubahan tersebut adalah gaya dari dalam bumi (Endogen) dan tenaga dari luar Bumi (eksogen).
Bumi merupakan bagian dari sistem galaksi yang berada di jagat raya, yaitu galaksi Bimasakti. Tahukah kamu apa yang disebut dengan galaksi? Dalam ilmu astronomi, galaksi diartikan sebagai suatu sistem yang terdiri dari bintang-bintang, gas dan debu yang amat luas, dimana anggotanya mempunyai gaya tarik-menarik (gravitasi). Bumi yang kita tempati hanya bagian kecil saja dari galaksi Bimasakti, yaitu bagian dari tata surya dengan matahari sebagai pusatnya.
Bimasakti bukanlah satu-satunya galaksi yang ada di alam semesta ini. Jumlah keseluruhan galaksi yang dapat dipotret dengan teleskop berdiameter 5m di Observatorium Hale mungkin sampai kira-kira satu miliar galaksi. Galaksi-galaksi inilah pengisi jagat raya.

1. Teori Kabut Kant-Laplace
Sejak jaman sebelum Masehi, para ahli telah banyak berfikir dan melakukan analisis terhadap gejala-gejala alam. Mulai abad ke 18 para ahli telah memikirkan proses terjadinya Bumi.
Ingatkah kamu tentang teori kabut (nebula) yang dikemukakan oleh Immanuel Kant (1755) dan Piere de Laplace (1796)? Mereka terkenal dengan Teori Kabut Kant-Laplace. Dalam teori ini dikemukakan bahwa di jagat raya terdapat gas yang kemudian berkumpul menjadi kabut (nebula). Gaya tarik-menarik antar gas ini membentuk kumpulan kabut yang sangat besar dan berputar semakin cepat. Dalam proses perputaran yang sangat cepat ini, materi kabut bagian khatulistiwa terlempar memisah dan memadat (karena pendinginan). Bagian yang terlempar inilah yang kemudian menjadi planet-planet dalam tata surya.

2. Teori Planetesimal
Seabad sesudah teori kabut tersebut, muncul teori Planetesimal yang dikemukakan oleh Chamberlin dan Moulton. Teori ini mengungkapkan bahwa pada mulanya telah terdapat matahari asal. Pada suatu ketika, matahari asal ini didekati oleh sebuah bintang besar, yang menyebabkan terjadinya penarikan pada bagian matahari. Akibat tenaga penarikan matahari asal tadi, terjadilah ledakan-ledakan yang hebat. Gas yang meledak ini keluar dari atmosfer matahari, kemudian mengembun dan membeku sebagai benda-benda yang padat, dan disebut planetesimal. Planetesimal ini dalam perkembangannya menjadi planet-planet, dan salah satunya adalah planet Bumi kita.
Pada dasarnya, proses-proses teoritis terjadinya planet-planet dan bumi, dimulai daribenda berbentuk gas yang bersuhu sangat panas. Kemudian karena proses waktu dan perputaran (pusingan) cepat, maka terjadi pendinginan yang menyebabkan pemadatan (pada bagian luar). Adapaun tubuh Bumi bagian dalam masih bersuhu tinggi.

3. Teori Pasang Surut Gas
Teori ini dikemukakan leh jeans dan Jeffreys, yakni bahwa sebuah bintang besar mendekati matahari dalam jarak pendek, sehingga menyebabkan terjadinya pasang surut pada tubuh matahari, saat matahari itu masih berada dalam keadaan gas. Terjadinya pasang surut air laut yang kita kenal di Bumi, ukuranya sangat kecil. Penyebabnya adalah kecilnya massa bulan dan jauhnya jarak bulan ke Bumi (60 kali radius orbit Bumi). Tetapi, jika  sebuah bintang yang bermassa hampir sama besar dengan matahari mendekati matahari, maka akan terbentuk semacam gunung-gunung gelombang raksasa pada tubuh matahari, yang disebabkan oleh gaya tarik bintang tadi. Gunung-guung tersebut akan mencapai tinggi yang luar biasa dan membentuk semacam lidah pijar yang besar sekali, menjulur dari massa matahari tadi dan merentang kea rah bintang besar itu.
Dalam lidah yang panas ini terjadi perapatan gas-gas dan akhirnya kolom-kolom ini akan pecah, lalu berpisah menjadi benda-benda tersendiri, yaitu planet-planet. Bintang besar yang menyebabkan penarikan pada bagian-bagian tubuh matahari tadi, melanjutkan perjalanan di jagat raya, sehingga lambat laun akan hilang pengaruhnya terhadap-planet yang berbentuk tadi. Planet-planet itu akan berputar mengelilingi matahari dan mengalami proses pendinginan. Proses pendinginan ini berjalan dengan lambat pada planet-planet  besar, seperti Yupiter dan Saturnus, sedangkan pada planet-planet kecil seperti Bumi kita, pendinginan berjalan relatif lebih cepat.
Sementara pendinginan berlangsung, planet-planet itu masih mengelilingi matahari pada orbit berbentuk elips, sehingga besar kemungkinan pada suatu ketika meraka akan mendekati matahari dalam jarak yang pendek. Akibat kekuatan penarikan matahari, maka akan terjadi pasang surut pada tubuh-tubuh planet yang baru lahir itu. Matahari akan menarik kolom-kolom materi dari planet-planet, sehingga lahirlah bulan-bulan (satelit-satelit) yang berputar mengelilingi planet-planet. peranan yang dipegang matahari dalam membentuk bulan-bulan ini pada prinsipnya sama dengan peranan bintang besar dalam membentuk planet-planet, seperti telah dibicarakan di atas.

4. Teori Bintang Kembar
Teori ini dikemukakan oleh seorang ahli Astronomi R.A Lyttleton. Menurut teori ini, galaksi berasal dari kombinasi bintang kembar. Salah satu bintang meledak sehingga banyak material yang terlempar. Karena bintang yang tidak meledak mempunyai gaya gravitasi yang masih kuat, maka sebaran pecahan ledakan bintang tersebut mengelilingi bintang yang tidak meledak. Bintang yang tidak meledak itu adalah matahari, sedangkan pecahan bintang yang lain adalah planet-planet yang mengelilinginya.

5. Teori Dentuman besar (Big Bang Theory)
Teori ini berdasarkan jenis asumsi adanya massa yang sangat besar dan mempunyai massa jenis sangat besar. Adanya reaksi inti menyebabkan amssa tersebut meledak hebat. Massa tersebut kemudian mengembang dengan sangat cepat, menjauhi pusat ledakan. Karena adanya gravitasi, maka bintang yang paling kuat gravitasinya akan menjadi pusatnya.
Dari berbagai teori yang dikemukakan para ahli, kebanyakan ilmuwan mendukung teori dentuman besar. Menurut mereka, ledakan besar tersebut merupakan awal terbentuknya alam semesta.

Jenis-jenis Batas Lempeng

Posted: Februari 5, 2010 in geograf
Tag:

Jenis-jenis Batas Lempeng

Tiga jenis batas lempeng (plate boundary).

Ada tiga jenis batas lempeng yang berbeda dari cara lempengan tersebut bergerak relatif terhadap satu sama lain. Tiga jenis ini masing-masing berhubungan dengan fenomena yang berbeda di permukaan. Tiga jenis batas lempeng tersebut adalah:

  1. Batas transform (transform boundaries) terjadi jika lempeng bergerak dan mengalami gesekan satu sama lain secara menyamping di sepanjang sesar transform (transform fault). Gerakan relatif kedua lempeng bisa sinistral (ke kiri di sisi yang berlawanan dengan pengamat) ataupun dekstral (ke kanan di sisi yang berlawanan dengan pengamat). Contoh sesar jenis ini adalah Sesar San Andreas di California.
  2. Batas divergen/konstruktif (divergent/constructive boundaries) terjadi ketika dua lempeng bergerak menjauh satu sama lain. Mid-oceanic ridge dan zona retakan (rifting) yang aktif adalah contoh batas divergen
  3. Batas konvergen/destruktif (convergent/destructive boundaries) terjadi jika dua lempeng bergesekan mendekati satu sama lain sehingga membentuk zona subduksi jika salah satu lempeng bergerak di bawah yang lain, atau tabrakan benua (continental collision) jika kedua lempeng mengandung kerak benua. Palung laut yang dalam biasanya berada di zona subduksi, di mana potongan lempeng yang terhunjam mengandung banyak bersifat hidrat (mengandung air), sehingga kandungan air ini dilepaskan saat pemanasan terjadi bercampur dengan mantel dan menyebabkan pencairan sehingga menyebabkan aktivitas vulkanik. Contoh kasus ini dapat kita lihat di Pegunungan Andes di Amerika Selatan dan busur pulau Jepang (Japanese island arc).

Kekuatan Penggerak Pergerakan Lempeng

Pergerakan lempeng tektonik bisa terjadi karena kepadatan relatif litosfer samudera dan karakter astenosfer yang relatif lemah. Pelepasan panas dari mantel telah didapati sebagai sumber asli dari energi yang menggerakkan tektonik lempeng. Pandangan yang disetujui sekarang, meskipun masih cukup diperdebatkan, adalah bahwa kelebihan kepadatan litosfer samudera yang membuatnya menyusup ke bawah di zona subduksi adalah sumber terkuat pergerakan lempeng. Pada waktu pembentukannya di mid ocean ridge, litosfer samudera pada mulanya memiliki kepadatan yang lebih rendah dari astenosfer di sekitarnya, tetapi kepadatan ini meningkat seiring dengan penuaan karena terjadinya pendinginan dan penebalan. Besarnya kepadatan litosfer yang lama relatif terhadap astenosfer di bawahnya memungkinkan terjadinya penyusupan ke mantel yang dalam di zona subduksi sehingga menjadi sumber sebagian besar kekuatan penggerak pergerakan lempeng. Kelemahan astenosfer memungkinkan lempeng untuk bergerak secara mudah menuju ke arah zona subduksi [19] Meskipun subduksi dipercaya sebagai kekuatan terkuat penggerak pergerakan lempeng, masih ada gaya penggerak lain yang dibuktikan dengan adanya lempeng seperti lempeng Amerika Utara, juga lempeng Eurasia yang bergerak tetapi tidak mengalami subduksi di manapun. Sumber penggerak ini masih menjadi topik penelitian intensif dan diskusi di kalangan ilmuwan ilmu bumi. Pencitraan dua dan tiga dimensi interior bumi (tomografi seismik) menunjukkan adanya distribusi kepadatan yang heterogen secara lateral di seluruh mantel. Variasi dalam kepadatan ini bisa bersifat material (dari kimia batuan), mineral (dari variasi struktur mineral), atau termal (melalui ekspansi dan kontraksi termal dari energi panas). Manifestasi dari keheterogenan kepadatan secara lateral adalah konveksi mantel dari gaya apung (buoyancy forces) [20] Bagaimana konveksi mantel berhubungan secara langsung dan tidak dengan pergerakan planet masih menjadi bidang yang sedang dipelajari dan dibincangkan dalam geodinamika. Dengan satu atau lain cara, energi ini harus dipindahkan ke litosfer supaya lempeng tektonik bisa bergerak. Ada dua jenis gaya yang utama dalam pengaruhnya ke pergerakan planet, yaitu friksi dan gravitasi.

Gaya Gesek

Basal drag
Arus konveksi berskala besar di mantel atas disalurkan melalui astenosfer, sehingga pergerakan didorong oleh gesekan antara astenosfer dan litosfer.
Slab suction
Arus konveksi lokal memberikan tarikan ke bawah pada lempeng di zona subduksi di palung samudera. Penyerotan lempengan (slab suction) ini bisa terjadi dalam kondisi geodinamik di mana tarikan basal terus bekerja pada lempeng ini pada saat ia masuk ke dalam mantel, meskipun sebetulnya tarikan lebih banyak bekerja pada kedua sisi lempengan, atas dan bawah

Gravitasi

Runtuhan gravitasi: Pergerakan lempeng terjadi karena lebih tingginya lempeng di oceanic ridge. Litosfer samudera yang dingin menjadi lebih padat daripada mantel panas yang merupakan sumbernya, maka dengan ketebalan yang semakin meningkat lempeng ini tenggelam ke dalam mantel untuk mengkompensasikan beratnya, menghasilkan sedikit inklinasi lateral proporsional dengan jarak dari sumbu ini. :Dalam teks-teks geologi pada pendidikan dasar, proses ini sering disebut sebagai sebuah doronga. Namun, sebenarnya sebutan yang lebih tepat adalah runtuhan karena topografi sebuah lempeng bisa jadi sangat berbeda-beda dan topografi pematang (ridge) yang melakukan pemekaran hanyalah fitur yang paling dominan. Sebagai contoh, pembengkakan litosfer sebelum ia turun ke bawah lempeng yang bersebelahan menghasilkan kenampakan yang bisa mempengaruhi topografi. Lalu, mantel plume yang menekan sisi bawah lempeng tektonik bisa juga mengubah topografi dasar samudera.
Slab-pull (tarikan lempengan)
Pergerakan lempeng sebagian disebabkan juga oleh berat lempeng yang dingin dan padat yang turun ke mantel di palung samudera.[21] Ada bukti yang cukup banyak bahwa konveksi juga terjadi di mantel dengan skala cukup besar. Pergerakan ke atas materi di mid-oceanic ridge mungkin sekali adalah bagian dari konveksi ini. Beberapa model awal Tektonik Lempeng menggambarkan bahwa lempeng-lempeng ini menumpang di atas sel-sel seperti ban berjalan. Namun, kebanyakan ilmuwan sekarang percaya bahwa astenosfer tidaklah cukup kuat untuk secara langsung menyebabkan pergerakan oleh gesekan gaya-gaya itu. Slab pull sendiri sangat mungkin menjadi gaya terbesar yang bekerja pada lempeng. Model yang lebih baru juga memberi peranan yang penting pada penyerotan (suction) di palung, tetapi lempeng seperti Lempeng Amerika Utara tidak mengalami subduksi di manapun juga, tetapi juga mengalami pergerakan seperti juga Lempeng Afrika, Eurasia, dan Antarktika. Kekuatan penggerak utama untuk pergerakan lempeng dan sumber energinya itu sendiri masih menjadi bahan riset yang sedang berlangsung

Gaya dari luar

Dalam studi yang dipublikasikan pada edisi Januari-Februari 2006 dari buletin Geological Society of America Bulletin, sebuah tim ilmuwan dari Italia dan Amerika Serikat berpendapat bahwa komponen lempeng yang mengarah ke barat berasal dari rotasi Bumi dan gesekan pasang bulan yang mengikutinya. Mereka berkata karena Bumi berputar ke timur di bawah bulan, gravitasi bulan meskipun sangat kecil menarik lapisan permuikaan bumi kembali ke barat. Beberapa juga mengemukakan ide kontroversial bahwa hasil ini mungkin juga menjelaskan mengapa Venus dan Mars tidak memiliki lempeng tektonik, yaitu karena ketiadaan bulan di Venus dan kecilnya ukuran bulan Mars untuk memberi efek seperti pasang di bumi.[22] Pemikiran ini sendiri sebetulnya tidaklah baru. Hal ini sendiri aslinya dikemukakan oleh bapak dari hipotesis ini sendiri, Alfred Wegener, dan kemudian ditentang fisikawan Harold Jeffreys yang menghitung bahwa besarnya gaya gesek oasang yang diperlukan akan dengan cepat membawa rotasi bumi untuk berhenti sejak waktu lama. Banyak lempeng juga bergerak ke utara dan barat, bahkan banyaknya pergerakan ke barat dasar Samudera Pasifik adalah jika dilihat dari sudut pandang pusat pemekaran (spreading) di Samudera Pasifik yang mengarah ke timur. Dikatakan juga bahwa relatif dengan mantel bawah, ada sedikit komponen yang mengarah ke barat pada pergerakan semua lempeng

Signifikansi relatif masing-masing mekanisme

Pergerakan lempeng berdasar pada data satelit GPS NASA JPL. Vektor di sini menunjukkan arah dan magnitudo gerakan.

Vektor yang sebenarnya pada pergerakan sebuah planet harusnya menjadi fungsi semua gaya yang bekerja pada lempeng itu. Namun, masalahnya adalah seberapa besar setiap proses ambil bagian dalam pergerakan setiap lempeng Keragaman kondisi geodinamik dan sifat setiap lempeng seharusnya menghasilkan perbedaan dalam seberapa proses-proses tersebut secara aktif menggerakkan lempeng. satu cara untuk mengatasi masalah ini adalah dengan melihat laju di mana setiap lempeng bergerak dan mempertimbangkan bukti yang ada untuk setiap kekuatan penggerak dari lempeng ini sejauh mungkin. Salah satu hubungan terpenting yang ditemukan adalah bahwa lempeng litosferik yang lengket pada lempeng yang tersubduksi bergerak jauh lebih cepat daripada lempeng yang tidak. Misalnya, Lempeng Pasifik dikelilingi zona subduksi (Ring of Fire) sehingga bergerak jauh lebih cepat daripada lempeng di Atlantik yang lengket pada benua yang berdekatan dan bukan lempeng tersubduksi. Maka, gaya yang berhubungkan dengan lempeng yang bergerak ke bawah (slab pull dan slab suction) adalah kekuatan penggerak yang menentukan pergerakan lempeng kecuali untuk lempeng yang tidak disubduksikan. Walau bagaimanapun juga, kekuatan penggerak pergerakan lempeng itu sendiri masih menjadi bahan perdebatan dan riset para ilmuwan

Lempeng-lempeng utama

Peta lempeng-lempeng tektonik

Lempeng-lempeng tektonik utama yaitu:

Lempeng-lempeng penting lain yang lebih kecil mencakup Lempeng India, Lempeng Arabia, Lempeng Karibia, Lempeng Juan de Fuca, Lempeng Cocos, Lempeng Nazca, Lempeng Filipina, dan Lempeng Scotia.

Pergerakan lempeng telah menyebabkan pembentukan dan pemecahan benua seiring berjalannya waktu, termasuk juga pembentukan superkontinen yang mencakup hampir semua atau semua benua. Superkontinen Rodinia diperkirakan terbentuk 1 miliar tahun yang lalu dan mencakup hampir semua atau semua benua di Bumi dan terpecah menjadi delapan benua sekitar 600 juta tahun yang lalu. Delapan benua ini selanjutnya tersusun kembali menjadi superkontinen lain yang disebut Pangaea yang pada akhirnya juga terpecah menjadi Laurasia (yang menjadi Amerika Utara dan Eurasia), dan Gondwana (yang menjadi benua sisanya)

Gunung berapi

Posted: Februari 4, 2010 in geograf
Tag:

Gunung berapi

Gunung berapi Mahameru atau Semeru di belakang. Latar depan adalah kaldera Bromo, Jawa Timur, Indonesia.

Letusan gunung berapi dapat berakibat buruk terhadap margasatwa lokal, dan juga manusia.

Gunung berapi atau gunung api secara umum adalah istilah yang dapat didefinisikan sebagai suatu sistem saluran fluida panas (batuan dalam wujud cair atau lava) yang memanjang dari kedalaman sekitar 10 km di bawah permukaan bumi sampai ke permukaan bumi, termasuk endapan hasil akumulasi material yang dikeluarkan pada saat meletus.

Lebih lanjut, istilah gunung api ini juga dipakai untuk menamai fenomena pembentukan ice volcanoes atau gunung api es dan mud volcanoes atau gunung api lumpur. Gunung api es biasa terjadi di daerah yang mempunyai musim dingin bersalju, sedangkan gunung api lumpur dapat kita lihat di daerah Kuwu, Purwodadi, Jawa Tengah. Masyarakat sekitar menyebut fenomena di Kuwu tersebut dengan istilah Bledug Kuwu

Gunung berapi terdapat di seluruh dunia, tetapi lokasi gunung berapi yang paling dikenali adalah gunung berapi yang berada di sepanjang busur Cincin Api Pasifik (Pacific Ring of Fire). Busur Cincin Api Pasifik merupakan garis bergeseknya antara dua lempengan tektonik.

Gunung berapi terdapat dalam beberapa bentuk sepanjang masa hidupnya. Gunung berapi yang aktif mungkin bertukar menjadi separuh aktif, menjadi padam, sebelum akhirnya menjadi tidak aktif atau mati. Bagaimanapun gunung berapi mampu menjadi padam dalam waktu 610 tahun sebelum bertukar menjadi aktif semula. Oleh itu, sukar untuk menentukan keadaan sebenarnya sesuatu gunung berapi itu, apakah sesebuah gunung berapi itu berada dalam keadaan padam atau telah mati.

Apabila gunung berapi meletus, magma yang terkandung di dalam kamar magmar di bawah gunung berapi meletus keluar sebagai lahar atau lava. Selain daripada aliran lava, kemusnahan oleh gunung berapi disebabkan melalui berbagai cara seperti berikut:

  • Aliran lava.
  • Letusan gunung berapi.
  • Aliran lumpur.
  • Abu.
  • Kebakaran hutan.
  • Gas beracun.
  • Gelombang tsunami.
  • Gempa bumi.
Tingkat isyarat gunung berapi di Indonesia
Status Makna Tindakan
AWAS
  • Menandakan gunung berapi yang segera atau sedang meletus atau ada keadaan kritis yang menimbulkan bencana
  • Letusan pembukaan dimulai dengan abu dan asap
  • Letusan berpeluang terjadi dalam waktu 24 jam
  • Wilayah yang terancam bahaya direkomendasikan untuk dikosongkan
  • Koordinasi dilakukan secara harian
  • Piket penuh
SIAGA
  • Menandakan gunung berapi yang sedang bergerak ke arah letusan atau menimbulkan bencana
  • Peningkatan intensif kegiatan seismik
  • Semua data menunjukkan bahwa aktivitas dapat segera berlanjut ke letusan atau menuju pada keadaan yang dapat menimbulkan bencana
  • Jika tren peningkatan berlanjut, letusan dapat terjadi dalam waktu 2 minggu
  • Sosialisasi di wilayah terancam
  • Penyiapan sarana darurat
  • Koordinasi harian
  • Piket penuh
WASPADA
  • Ada aktivitas apa pun bentuknya
  • Terdapat kenaikan aktivitas di atas level normal
  • Peningkatan aktivitas seismik dan kejadian vulkanis lainnya
  • Sedikit perubahan aktivitas yang diakibatkan oleh aktivitas magma, tektonik dan hidrotermal
  • Penyuluhan/sosialisasi
  • Penilaian bahaya
  • Pengecekan sarana
  • Pelaksanaan piket terbatas
NORMAL
  • Tidak ada gejala aktivitas tekanan magma
  • Level aktivitas dasar
  • Pengamatan rutin
  • Survei dan penyelidikan

// <![CDATA[//

Jenis gunung berapi berdasarkan bentuknya

Stratovolcano
Tersusun dari batuan hasil letusan dengan tipe letusan berubah-ubah sehingga dapat menghasilkan susunan yang berlapis-lapis dari beberapa jenis batuan, sehingga membentuk suatu kerucut besar (raksasa), terkadang bentuknya tidak beraturan, karena letusan terjadi sudah beberapa ratus kali. Gunung Merapi merupakan jenis ini.
Perisai
Tersusun dari batuan aliran lava yang pada saat diendapkan masih cair, sehingga tidak sempat membentuk suatu kerucut yang tinggi (curam), bentuknya akan berlereng landai, dan susunannya terdiri dari batuan yang bersifat basaltik. Contoh bentuk gunung berapi ini terdapat di kepulauan Hawai.
Cinder Cone
Merupakan gunung berapi yang abu dan pecahan kecil batuan vulkanik menyebar di sekeliling gunung. Sebagian besar gunung jenis ini membentuk mangkuk di puncaknya. Jarang yang tingginya di atas 500 meter dari tanah di sekitarnya.
Kaldera
Gunung berapi jenis ini terbentuk dari ledakan yang sangat kuat yang melempar ujung atas gunung sehingga membentuk cekungan. Gunung Bromo merupakan jenis ini.

Klasifikasi gunung berapi di Indonesia

Tipe A
Gunung berapi yang pernah mengalami erupsi magmatik sekurang-kurangnya satu kali sesudah tahun 1600.
Tipe B
Gunung berapi yang sesudah tahun 1600 belum lagi mengadakan erupsi magmatik, namun masih memperlihatkan gejala kegiatan seperti kegiatan solfatara.
Tipe C
Gunung berapi yang erupsinya tidak diketahui dalam sejarah manusia, namun masih terdapat tanda-tanda kegiatan masa lampau berupa lapangan solfatara/fumarola pada tingkah lemah.